81 research outputs found

    Volcanic Hot-Spot Detection Using SENTINEL-2: A Comparison with MODIS−MIROVA Thermal Data Series

    Get PDF
    In the satellite thermal remote sensing, the new generation of sensors with high-spatial resolution SWIR data open the door to an improved constraining of thermal phenomena related to volcanic processes, with strong implications for monitoring applications. In this paper, we describe a new hot-spot detection algorithm developed for SENTINEL-2/MSI data that combines spectral indices on the SWIR bands 8a-11-12 (with a 20-meter resolution) with a spatial and statistical analysis on clusters of alerted pixels. The algorithm is able to detect hot-spot-contaminated pixels (S2Pix) in a wide range of environments and for several types of volcanic activities, showing high accuracy performances of about 1% and 94% in averaged omission and commission rates, respectively, underlining a strong reliability on a global scale. The S2-derived thermal trends, retrieved at eight key-case volcanoes, are then compared with the Volcanic Radiative Power (VRP) derived from MODIS (Moderate Resolution Imaging Spectroradiometer) and processed by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system during an almost four-year-long period, January 2016 to October 2019. The presented data indicate an overall excellent correlation between the two thermal signals, enhancing the higher sensitivity of SENTINEL-2 to detect subtle, low-temperature thermal signals. Moreover, for each case we explore the specific relationship between S2Pix and VRP showing how different volcanic processes (i.e., lava flows, domes, lakes and open-vent activity) produce a distinct pattern in terms of size and intensity of the thermal anomaly. These promising results indicate how the algorithm here presented could be applicable for volcanic monitoring purposes and integrated into operational systems. Moreover, the combination of high-resolution (S2/MSI) and moderate-resolution (MODIS) thermal timeseries constitutes a breakthrough for future multi-sensor hot-spot detection systems, with increased monitoring capabilities that are useful for communities which interact with active volcanoes

    The Capabilities of FY-3D/MERSI-II Sensor to Detect and Quantify Thermal Volcanic Activity: The 2020–2023 Mount Etna Case Study

    Get PDF
    Satellite data provide crucial information to better understand volcanic processes and mitigate associated risks. In recent years, exploiting the growing number of spaceborne polar platforms, several automated volcanic monitoring systems have been developed. These, however, rely on good geometrical and meteorological conditions, as well as on the occurrence of thermally detectable activity at the time of acquisition. A multiplatform approach can thus increase the number of volcanological-suitable scenes, minimise the temporal gap between acquisitions, and provide crucial information on the onset, evolution, and conclusion of both transient and long-lasting volcanic episodes. In this work, we assessed the capabilities of the MEdium Resolution Spectral Imager-II (MERSI-II) sensor aboard the Fengyun-3D (FY-3D) platform to detect and quantify heat flux sourced from volcanic activity. Using the Middle Infrared Observation of Volcanic Activity (MIROVA) algorithm, we processed 3117 MERSI-II scenes of Mount Etna acquired between January 2020 and February 2023. We then compared the Volcanic Radiative Power (VRP, in Watt) timeseries against those obtained by MODIS and VIIRS sensors. The remarkable agreement between the timeseries, both in trends and magnitudes, was corroborated by correlation coefficients (ρ) between 0.93 and 0.95 and coefficients of determination (R2) ranging from 0.79 to 0.84. Integrating the datasets of the three sensors, we examined the effusive eruption of Mount Etna started on 27 November 2022, and estimated a total volume of erupted lava of 8.15 ± 2.44 × 106 m3 with a Mean Output Rate (MOR) of 1.35 ± 0.40 m3 s-1. The reduced temporal gaps between acquisitions revealed that rapid variations in cloud coverage as well as geometrically unfavourable conditions play a major role in thermal volcano monitoring. Evaluating the capabilities of MERSI-II, we also highlight how a multiplatform approach is essential to enhance the efficiency of satellite-based systems for volcanic surveillance

    Tracking dynamics of magma migration in open-conduit systems

    Get PDF
    Open-conduit volcanic systems are typically characterized by unsealed volcanic conduits feeding permanent or quasi-permanent volcanic activity. This persistent activity limits our ability to read changes in the monitored parameters, making the assessment of possible eruptive crises more difficult. We show how an integrated approach to monitoring can solve this problem, opening a new way to data interpretation. The increasing rate of explosive transients, tremor amplitude, thermal emissions of ejected tephra, and rise of the very-long- period (VLP) seismic source towards the surface are interpreted as indicating an upward migration of the magma column in response to an increased magma input rate. During the 2014 flank eruption of Stromboli, this magma input pre- ceded the effusive eruption by several months. When the new lateral effusive vent opened on the Sciara del Fuoco slope, the effusion was accompanied by a large ground deflation, a deepening of the VLP seismic source, and the cessation of summit explosive activity. Such observations suggest the drainage of a superficial magma reservoir confined between the crater terrace and the effusive vent. We show how this model successfully reproduces the measured rate of effusion, the observed rate of ground deflation, and the deepening of the VLP seismic source. This study also demonstrates the ability of the geophysical network to detect superficial magma recharge within an open-conduit system and to track magma drainage during the effusive crisis, with a great impact on hazard assessment
    corecore